Friday, August 1, 2025

Air Launch to Low Earth Orbit

There is a conundrum associated with launching to low Earth orbit from an airplane.  The illustration tries to sum up the various parts of it.  That is not to say that it cannot be done,  because it already has.  But,  it may,  or may not,  be an attractive way to do the mission.

The first part of this conundrum is the low speed of the launch aircraft (which for the Pegasus system is a wide-body subsonic airliner).  That forces the dropped rocket vehicle to be at least two-stage,  despite the advantage of the low stratospheric launch altitude.  As it says in the illustration,  speed at drop is the biggest influence on the rocket vehicle design,  and altitude the least,  although both are beneficial.  Mach 0.85 at 45,000 feet is but 822 feet/sec (0.25 km/s).  The drag loss of the rocket vehicle is (at least theoretically) less,  because it starts in thinner air up high.

The second part of this conundrum is not so obvious:  the level path angle of the carrier airplane at the drop point.   A low-loss non-lifting ballistic trajectory begun at stratospheric altitude would need a path angle at ignition on the order of 45 degrees,  maybe even a little more.  So,  either the carrier airplane,  or the rocket vehicle,  has to pull up rather sharply,  to reach that path angle from level flight.  One or the other must do this!

The usual airplane flying high in the stratosphere is at or near its “service ceiling”,  where there is barely enough wing lift being produced at an efficient angle of attack,  to hold up the weight,  and essentially all the thrust the airbreathing engines can make is just overcoming drag at the flight speed!  The airplane can neither accelerate path-wise,  nor can it climb!  That is the definition of “service ceiling”,  and for most planes,  it falls in the 45,000-55,000 foot altitude range,  at high subsonic speeds.  There have been exceptions:  the U-2 variants and the SR-71 variants could fly higher,  being very specialized designs.

Left unaddressed in the airplane,  the service ceiling problem puts the sharp pull-up task squarely upon the rocket vehicle to be dropped.  There are only two choices:  put wings on the rocket vehicle,  or fly it at very large angles of attack,  so that the cross-path vector component of its thrust is effectively a large lift force. 

Pegasus used large wings,  on the first stage of a two-stage rocket vehicle.  Those add both weight and drag,  especially drag-due-to-lift at the large lift coefficient needed to pull up sharply.  That pretty-well eats up the advantage gained by launching the rocket at elevated altitude in the thin air.  The wings are bigger than you would want,  precisely because of that thin air!  And that problem is why there have just not been that many Pegasus launches.

Leaving the wings off of the rocket vehicle forces you to pitch it up to very large angles of attack,  in the 45-75-degree range,  to get enough of a cross-path vector component of the rocket thrust,  to serve as the necessary lift force for a sharp pull-up maneuver.  That reduces the path-wise vector component of thrust,  while at the same time greatly increasing vehicle drag.  So,  you accelerate slowly( if at all) in rocket thrust during the pull-up maneuver,  using up a great deal of rocket propellant that adds nothing to your speed.  That also eats up any advantage of launching in the thin air,  way up high!

The only other feasible alternative is to add another large source of thrust to the launch airplane,  so that it can execute the pull-up maneuver into a zoom climb,  without stalling and falling out of the sky,  out-of-control.  Generally speaking,  you would add a source of thrust immune to the service ceiling effect,  and that is rocket thrust!  Your launch airplane would have to be modified for mixed (parallel-burn) rocket and gas turbine propulsion,  somewhat similar to the NF-104 and some of the early high-speed X-planes. 

So far,  no air-launch carrier plane has had this design approach,  but it certainly would be possible!  And it would take care of the high path angle requirement that is second only to speed at launch in importance,  while keeping the wings on the airplane where they belong,  and not on the rocket vehicle!

That leaves speed at launch,  the most important variable affecting the rocket vehicle design.  There are (or have been) very few supersonic aircraft designs that are also large enough to serve as a drop aircraft for a rocket vehicle of any significant size.  Those would include the B-58 Hustler (long-retired,  and none are left),  the SR-71 (also retired,  but very expensive to operate indeed),  and the B-1B bomber (currently in service as a military strategic bomber).  

The modifications to include rocket propulsion to the SR-71 likely would not fit within its very-critical shape.  The M-21 variant that launched the D-21 drone was limited in payload size,  to the size of that drone (not very large).  A rocket might be added in the tail cone of a B-1B,  but its payload would be limited to that which would fit in its bomb bay.  That B-1B option would reach a low supersonic launch speed at the high path angle needed,  with a rather-dangerous zoom climb and recovery after drop.

That brings up the danger of supersonic store separation.  There is a very good reason that most military aircraft,  even those capable of supersonic flight,  are limited to high-subsonic weapon release speeds.  That is because the inherent wobbles of a released store will include pitch-up,  thus developing lift.  At high enough speeds,  that lift generated by the wobbling store will exceed its weight,  and it can easily fly up and collide with the drop aircraft,  before the store’s drag can pull it behind. 

It cost a destroyed airplane and the life of one of the two crew,  to learn this lesson with the M-21 trying to launch a D-21 drone (without a booster) at just about Mach 3.   That is why the drone was re-fitted with a big booster,  and launched subsonically from B-52’s instead.  It’s not that supersonic store separation cannot be done (because that booster separated at Mach 3 from the D-21).  But successful supersonic store separation is very difficult to achieve,  and the risks of doing it are inherently very high.

So how fast a drop speed can be obtained?  That depends upon the gas turbine engines powering the launch aircraft.  Those are seriously limited by the high air temperatures associated with capturing supersonic air.  Most are limited to about Mach 2.5.  There are a very few that went faster:  those powering the XB-70 at Mach 3,  those powering the SR-71 variants at Mach 3.2,  and the 500 hour short-life,  replace-don’t-overhaul engines in the Mig-25 at Mach 3.5.  So,  to have a wide range of possible engines available for new designs,  it looks like Mach 2.5 at drop is “about it” with gas turbine.  Maybe Mach 3.

So,  the answer would seem to be a mixed-propulsion airplane with gas turbine propulsion,  augmented by parallel-burn rocket propulsion,  added to enable the zoom-climb by a sharp pull-up maneuver.  This would be at high altitude near 45,000 feet,  for the drop of the rocket vehicle.  To do this successfully,  the very difficult supersonic store separation problem must be very carefully addressed!  Both aircraft and crews are at serious risk.

Mach 2.5 at that altitude would be 2419 feet/second (0.737 km/s),  less than 10% of low circular orbit speed,  so one is still looking at a two-stage rocket vehicle to reach orbit.  Deliverable payload would be limited in size by the size of the drop aircraft,  since that in turn limits the size of the rocket vehicle it can drop.

In a word,  this has already been done with subsonic carrier aircraft,  although it has proven no more attractive than vertical rocket launch,  at best.  The supersonic release has yet to be tried,  and will prove both difficult and dangerous,  although the improvement in attractiveness may be worth that effort and risk.  No one yet knows. 

--------

Search code 01082025;  

search keywords:  aerothermo,  airplanes,  launch,  space program