Thursday, April 4, 2024

Ascent Compromise Design Trade Study

Update 4-8-2024:  Should any readers want to learn how to do what I do (estimating performance of launch rockets or other space vehicles),   be aware that I have created a series of short courses in how to go about these analyses,  complete with effective tools for actually carrying it out.  These course materials are available for free from a drop box that can be accessed from the Mars Society’s “New Mars” forums,  located at http://newmars.com/forums/,  in the “Acheron labs” section,  “interplanetary transportation” topic,  and conversation thread titled “orbital mechanics class traditional”.  You may have scroll down past all the “sticky notes”. 

The first posting in that thread has a list of the classes available,  and these go far beyond just the two-body elementary orbital mechanics of ellipses.  There are the empirical corrections for losses to be covered,  approaches to use for estimating entry descent and landing on bodies with atmospheres,  and spreadsheet-based tools for estimating the performance of rocket engines and rocket vehicles.  The same thread has links to all the materials in the drop box. 

The New Mars forums would also welcome your participation.  Send an email to newmarsmember@gmail.com to find out how to join up.

A lot of the same information from those short courses is available scattered among the postings here.  There is a sort of “technical catalog” article that I try to main current.  It is titled “Lists of Some Articles by Topic Area”,  posted 21 October 2021.  There are categories for ramjet and closely-related,  aerothermodynamics and heat transfer,  rocket ballistics and rocket vehicle performance articles (of specific interest here),  asteroid defense articles,  space suits and atmospheres articles,  radiation hazard articles,  pulsejet articles,  articles about ethanol and ethanol blends in vehicles,  automotive care articles,  articles related to cactus eradication,  and articles related to towed decoys.  All of these are things that I really did. 

To access quickly any article on this site,  use the blog archive tool on the left.  All you need is the posting date and the title.  Click on the year,  then click on the month,  then click on the title if need be (such as if multiple articles were posted that month).  Visit the catalog article and just jot down those you want to go see.

Within any article,  you can see the figures enlarged,  by the expedient of just clicking on a figure.  You can scroll through all the figures at greatest resolution in an article that way,  although the figure numbers and titles are lacking.  There is an “X-out” top right that takes you right back to the article itself. 

----------     

I updated the “compressible.xlsx” spreadsheet file as “liquid rockets.xlsx”,  and deleted the extraneous worksheets.  I added a convenient block of relevant outputs that requires no new inputs other than a name for the propellant combination.  I developed a “Paintbrush” file “engine sizing report.png” on which to copy and paste the convenient outputs block in one fell swoop.  You need only adjust the name text above the engine diagram.  See Figure 1 for what this looks like.  

Figure 1 – Image of What the “Engine Sizing Report” Format Looks Like

This is all you really need,  to understand what the engine can do,  except that you must look at the green-highlighted separation limits data,  and understand that the design shown is unseparated at sea level for full throttle,  and part-throttle settings (in this case 80% Pc).  This example has a backpressure-induced flow separation in the bell at min throttle,  below very near 12.6 kft.

You still have the two performance vs altitude plots already made by the “r noz alt” worksheet.   If you want to use them,  I  recommend you copy and paste them to a “Paintbrush” png file,  then annotate them for separation.  Such is illustrated in Figure 2 below.  These are located just to the right of the altitude performance calculation block. 

When evaluating flow separation in any of the calculation blocks,  note that the pressure in the standard atmosphere was modeled,  for purposes of quick and easy estimates of the altitudes below which to expect separation.  That model was reversed to altitude as a function of Pa,  plotted,  and a 4th-degree polynomial trend line developed with the spreadsheet software.  The quality of the fit was excellent.  But,  because of the nature of the fitted curve shape,  using this on pressures above sea level standard 14.696 psia produces nonsensical results.  See Figure 3 below for why.

Figure 2 – Example Plots,  Showing How to Annotate for Flow Separation

Figure 3 – When and How to Use the Estimates of Separation Altitude

               Using the spreadsheet

To obtain such results quickly and conveniently,  I added an automated determination of the expansion-design value of Pe appropriate to compromise-ascent design,  once the design Pc has been selected and input.  Just copy and paste-123 the design Pe value into the indicated input cell for it.  I am recommending that you use 80% Pc for this purpose,  and that you size for thrust at sea level,  using the sea level CF for that input.

If you are doing a traditional sea level-optimized design,  I recommend you use max (100%) Pc,  and the sea level standard 14.696 psia as your design Pe.  Again,  you can just copy and paste-123 the values into the cells quickly.  I recommend that you use the sea level CF for sizing to your thrust. 

If you are doing a vacuum design,  there is some known expansion area ratio A/A* to which you are designing.  I have retained the “compr flow” worksheet for this purpose.  Go to it,  and make sure you have the correct specific heat ratio selected.  Then in the indicated input cell,  iteratively adjust exit Mach number Me until you hit exactly the desired value of A/A*.  Read the pressure ratio PR at that Mach,  and go back to the “r noz alt” worksheet and input that PR value, almost top right. 

Input PR in “r noz alt” where shown,  and the appropriate design Pe will appear,  to be used with your input expansion design Pc.  Copy and paste-123 that design Pe value into the appropriate input cell.  I also recommend that you copy and paste-123 the vacuum CFvac to size vacuum thrust for a vacuum design,  which in all probability cannot be unseparated at sea level,  even at full throttle.

               Trade Study for Throttle Setting to Use for Ascent Compromise Design

For the purpose of determining what throttle-setting Pc-value to use for ascent-compromise designs,  I ran a trade study.  I ran ascent-compromise designs at Pc values from 60% to 95% max Pc,  by increments of 5%.  This was for a liquid oxygen-liquid methane (LOX-LCH4) propellant combination,  in an engine technology characterizable as “low-tech”. 

Max Pc was assumed to be only 2000 psia.  I ran a constant pressure turndown ratio (P-TDR) of 2,  which set the min Pc to 50% of max,  or 1000 psia.  The intermediate throttle setting is what I varied.  I ran this with an 18o-8o curved bell,  a throat discharge coefficient CD = 0.995,  and a dumped bleed fraction BF = 0.05.  All of this assumes a gas specific heat ratio of 1.20. 

For comparison,  I also ran a traditional sea level-optimized design,  and two vacuum designs at A/A* = 100 and 300.  The results were graphed in 4 different plots,  presented as annotated in Figure 4 below

Top-left of the figure,  the plot shows how sea level,  ascent-averaged,  and vacuum specific impulse (Isp) vary versus the range of throttle settings investigated.  The ascent-averaged Isp trend is not linear,  and I show a sort of “aft-tangent”  determination of the rather weak knee in this curve near 80% throttle setting. 

Top-right in the figure is the same basic plot,  but to a different scale,  showing the ascent-compromise trends and the bounds represented by the sea level and the two vacuum designs.  All of the ascent-compromise ascent-average Isp values beat the sea level design’s ascent-averaged Isp value.  They even beat the sea level design’s vacuum Isp value!  They are not significantly far below the vacuum Isp value for the A/A* = 100 vacuum design,  which in turn is not far below the vacuum design for A/A* = 300!  

Figure 4 – Trade Study Plots

Bottom left is a plot of estimated expansion bell lengths (Lbell) vs the throttle setting.  These are crudely estimated as Lbell = (De – Dt)/(2*tan(avg a)),  where avg a = 0.5*(a1 + a2).  The point here is twofold:  (1) the 80% or maybe 85% values for Lbell are halfway between the sea level and the vac-100 (A/A*=100) designs,  and (2) the trend is flat enough that none of the compromise choices are far from that “halfway-between” point.

Bottom-right is a plot of A/A* vs throttle setting,  quite similar to the Lbell plot.  In this case,  the 80% point is about a quarter of the way up between the sea level and vacuum A/A*=100 designs.  The trend is flat enough that no power setting investigated is far from that point.

               Recommendations for sizing engines

For the “traditional sea level” designs,  size the expansion between max Pc and Pe = Pa = 14.696 psia (1 standard atmosphere). That produces a sea level thrust coefficient CF,  which you use with a sea level thrust requirement to size dimensions and flow rates.

For the “vacuum designs”,  there is some max expansion ratio,  allowable in terms of fitting the engine into the available space for it,  aboard the vehicle.  Determining that fit may well be iterative!  Size the expansion area ratio to that max area ratio A/A*,  at max Pc,  which produces a vacuum thrust coefficient CFvac,  once you translate A/A* into a design Pe value in the spreadsheet.   Use that CFvac and max Pc to size the flow rates and dimensions to a vacuum thrust requirement.

For the ascent compromise designs,  determine separately what throttle setting (percent of max Pc) will be used to size the expansion.  The recommendation here is 80%,  although variations of 5% up or down from that make very little difference.  I would not recommend less than 75%,  nor any more than about 85%,  though. 

Higher setting is higher vacuum Isp but lower sea level Isp.  Lower setting is lower vacuum Isp but higher sea level Isp.  The increase in ascent-averaged Isp with increased setting is almost negligible,  because of the offsetting effects on vacuum and sea level Isp.  But using near-80% setting gives you more “room for error” in a sea level open-air nozzle test,  where you need to ignite at a low setting,  and then throttle-up rather quickly above the separation-point setting,  before any damage is done.

               What this spreadsheet does not do

This spreadsheet is for calculating good estimates of performance for liquid rocket engines of fixed nozzle geometry.  It does not do variable geometry notions such as bell extensions,  excepting as separate estimates for the two geometries as if they were fixed.  It does not do free-expansion designs at all.  Those would include both coaxial and linear aerospike geometries,  expansion-defection designs,  or any exit stream with both a free surface and contact with a physical surface.

While it provides very good performance estimates of fixed bell geometry designs,  it does not model the “cycle” that powers the turbopumps.  One does not need to do that,  to model thrust and specific impulse,  as long as one has a good estimate of the dumped bleed gas fraction representing the cycle.

               Availability of the spreadsheet

I would be happy to share this spreadsheet.  Simply contact me to make the request. There is no user’s manual (see #1 Update 4-4-2024),  although its basic operation is described in this article and another on this site. User inputs are highlighted yellow.  Significant results are highlighted blue.  Things you need to check or to iterate are highlighted green.  The Excel “copy” command,  and the “paste-123” command are the best way to transfer numerical data from one cell to another.

#1 Update 4-4-2024:  This document was originally written during 12 through 16 March,  2024.  There is now a user’s manual,  available as a pdf document,  along with the spreadsheet file “liquid rockets.xls”.   The “Paintbrush” file “engine sizing report.png” is also available as a convenient tool for reporting results.  Open it in “Paintbrush”,  cut the block of data out of it,  and copy and paste the new block from the spreadsheet into it.

               Miscellaneous things to know about

Be aware that off to the right on the “r noz alt” worksheet are some other data and plots that I used deciding how to correlate Pa vs altitude for purposes of determining the altitudes where separation might occur.  These would be of little use to any user.  Just ignore them.

That does bring up the separation backpressure estimate,  which is entirely empirical,  and was developed originally for the straight conical nozzles seen in missile solid rocket motors.  It is slightly conservative for curved bells.  It takes this form:

               Psep/Pc = (1.5*Pe/Pc)0.8333

The ratio Pe/Psep is a simple function of the nozzle area expansion ratio.  Psep is thus an easily-computed constant times whatever your operating Pc might be.  Whenever the ambient atmospheric pressure Pa equals Psep,  separation is likely.  When Pa exceeds Psep to any noticeable extent,  separation is certain! 

There are shocks that touch the inside bell surface when separation occurs.  These greatly amplify the localized heating at the impingement location,  leading to burn-throughs and destruction in only several seconds.  That is why separation is to be avoided.  See Figure 5.

Figure 5 – Sketch of Separation Phenomena in a Bell Nozzle

#2 Update 4-4-2024:  There are two very closely related articles on this site that this document and its partial throttle setting trade study supports.  They are

“Bounding Calculations for SSTO Concepts”,  dated 4-2-2024

“Bounding Calculations for TSTO”,  dated 4-3-2024 

Both of these have reference lists of other closely-related earlier articles on this site,  including two where I investigated free-expansion nozzle design approaches,  among other things. 

In the performance of the trade study,  I sized multiple engines with the “r noz alt” worksheet,  and reported those results (rather easily and quickly) using the “engine sizing report.png” Paintbrush file.  Those sized engine results follow,  as a collection of unnumbered and untitled figures.  













No comments:

Post a Comment